לואיס א' קפארלי (Luis Caffarelli)

לואיס א' קפארלי (Luis Caffarelli) זוכה פרס וולף במתמטיקה - 2012

פרופ' לואיס א' קפארלי (יליד 1948, ארגנטינה) היו מספר פריצות דרך מעמיקות מאוד. בעבודתו המוקדמת על בעיות שפה חופשית החלו להתגלות כישרונו והאינטואיציה שלו יוצאי הדופן. בעיות שפה חופשית עוסקות הן במציאת פתרון למשוואה והן במציאת תחום קיומה של המשוואה. בסדרת עבודות חלוציות, פרופ' קפארלי הציג מתודולוגיה חדשה המובילה לבסוף, לאחר מספר הערכות טכניות מדהימות המשפרות צעד אחר צעד את רגולריוּת הפתרון והשפה, לרגולריות מלאה תחת הנחות חלשות למדי. למרות שהתיאוריה מסובכת, הטיעונים המתמטיים הם אלמנטאריים ומלאי אינטואיציה גיאומטרית יפה ושליטה מוחלטת בטכניקות אנליטיות.

 תרומה יסודית שנייה של פרופ' קפארלי היא בחקר משוואות דיפרנציאליות חלקיות אליפטיות לא-לינאריות לחלוטין (כולל משוואת מונז'-אמפּר המפורסמת), שבו פרופ' קפארלי חולל מהפכה. התוצאה היא, שלמרות שהמשוואות הן לא-לינאריות, לצורכי הרגולריוּת הן מתנהגות כאילו הן לינאריות (עבודותיהם של נירנברג, ספּרוּק, אוונס, קרילוב ואחרים מילאו גם הן תפקיד משמעותי כאן).

תרומה בסיסית נוספת של פרופ' קפארלי היא עבודתו המשותפת עם קוהן (Kohn) ונירנברג על רגולריוּת חלקית של הפתרונות של משוואת נאווייר-סטוקסNavier-Stokes) ) הבלתי דחיסה במרחב תלת-ממדי. למרות שהרגולריות המלאה של הפתרונות אינה ידועה עדיין ומציאת תשובה כנראה קשה מאד, קפארלי-קוהן-נירנברג הוכיחו שהקבוצה הסינגולארית חייבת להיות בעלת ממד האוסדורף פרבולי, קטן ממש מ-1. בפרט, סיבים סינגולאריים אינם יכולים להופיע (קרדיט חלקי מגיע גם ל-ו' שפר).

לפרופ' קפארלי גם עבודות מעמיקות על הומוגניזציה ועל משוואות עם פיזור לא-מקומי. ניתן להמשיך ברשימת ההישגים. פרופ' קפארלי הוא כיום המומחה המוביל בעולם בתחום רגולריות הפתרונות של משוואות דיפרנציאליות חלקיות.

עבודותיו של פרופ' לואיס קפארלי על משוואות דיפרנציאליות חלקיות הן בעלות חזון רב. משוואות דיפרנציאליות חלקיות הן המשוואות שבהן הנעלם הוא פונקציה המתארת התפתחות תהליך בזמן, כגון התפלגות טמפרטורה או תנועת נוזלים. מספר חוקי יסוד בטבע, וכמה מהבעיות החשובות במתמטיקה, ניתנים לביטוי כמשוואות דיפרנציאליות חלקיות.